Minimax Estimation via Wavelets for Indirect Long-Memory Data

نویسنده

  • Yazhen Wang
چکیده

In this paper we model linear inverse problems with long-range dependence by a fractional Gaussian noise model and study function estimation based on observations from the model. By using two wavelet-vaguelette decompositions, one for the inverse problem which simultaneously quasi-diagonalizes both the operator and the prior information and one for long-range dependence which decorrelates fractional Gaussian noise, we establish asymptotics for minimax risks, and show that the wavelet shrinkage estimate can be tuned to achieve the minimax convergence rate and signiicantly outperform linear estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Function Estimation via Wavelet

In this article we study function estimation via wavelet shrinkage for data with long-range dependence. We propose a fractional Gaussian noise model to approximate nonparametric regression with long-range dependence and establish asymp-totics for minimax risks. Because of long-range dependence, the minimax risk and the minimax linear risk converge to zero at rates that diier from those for data...

متن کامل

Function Estimation via Wavelet Shrinkage

In this article we study function estimation via wavelet shrinkage for data with long-range dependence. We propose a fractional Gaussian noise model to approximate nonparametric regression with long-range dependence and establish asymp-totics for minimax risks. Because of long-range dependence, the minimax risk and the minimax linear risk converge to zero at rates that diier from those for data...

متن کامل

On the Spectral Density of the Wavelet Coefficients of Long Memory Time Series with Application to the Log-regression Estimation of the Memory Parameter

In recent years, methods to estimate the memory parameter using wavelet analysis have gained popularity in many areas of science. Despite its widespread use, a rigorous semi-parametric asymptotic theory, comparable to the one developed for Fourier methods, is still missing. In this contribution, we adapt to the wavelet setting the classical semi-parametric framework introduced by Robinson and h...

متن کامل

Wavelets and Estimation of Long Memory in Log Volatility and Time Series Perturbed by Noise

Percival and Walden (2002) present a wavelet methodology of the least squaresestimation of the long memory parameter for fractionally differenced processes. Wesuggest that the general idea of using wavelets for estimating long memory could beused for the estimation of long memory in time series perturbed by noise. One prominentexample thereof is the time series of log-Garman-Kla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997